

Structural Induction with Haskell

Thomas Sewell UNSW Term 3 2024

Definition

Let P(x) be a predicate on natural numbers $x \in \mathbb{N}$. To show $\forall x \in \mathbb{N}$. P(x), we can use induction:

Definition

Let P(x) be a predicate on natural numbers $x \in \mathbb{N}$. To show $\forall x \in \mathbb{N}$. P(x), we can use induction:

• Show *P*(0)

Definition

Let P(x) be a predicate on natural numbers $x \in \mathbb{N}$. To show $\forall x \in \mathbb{N}$. P(x), we can use induction:

- Show *P*(0)
- Assuming P(k) (the *inductive hypothesis*), show P(k+1).

Definition

Let P(x) be a predicate on natural numbers $x \in \mathbb{N}$. To show $\forall x \in \mathbb{N}$. P(x), we can use induction:

- Show *P*(0)
- Assuming P(k) (the *inductive hypothesis*), show P(k+1).

Example (Sum of Integers)

Write a recursive function sumTo to sum up all integers from 0 to the input n.

Definition

Let P(x) be a predicate on natural numbers $x \in \mathbb{N}$. To show $\forall x \in \mathbb{N}$. P(x), we can use induction:

- Show *P*(0)
- Assuming P(k) (the *inductive hypothesis*), show P(k+1).

Example (Sum of Integers)

Write a recursive function sumTo to sum up all integers from 0 to the input n.

Show that:

$$\forall n \in \mathbb{N}$$
. sum $To \ n = \frac{n(n+1)}{2}$

Haskell Data Types

We can define natural numbers as a Haskell data type, reflecting this inductive structure.

data
$$Nat = Z \mid S Nat$$

Haskell Data Types

We can define natural numbers as a Haskell data type, reflecting this inductive structure.

data
$$Nat = Z \mid S Nat$$

Example

Define addition, prove that $\forall n. \ n + Z = n.$

Haskell Data Types

We can define natural numbers as a Haskell data type, reflecting this inductive structure.

data
$$Nat = Z \mid S Nat$$

Example

Define addition, prove that $\forall n. \ n + Z = n.$

Inductive Structure

Observe that the non-recursive constructors correspond to base cases and the recursive constructors correspond to inductive cases

Lists

Lists are singly-linked lists in Haskell. The empty list is written as [] and a list node is written as x:xs. The value x is called the head and the rest of the list xs is called the tail. Thus:

```
"hi!" == ['h', 'i', '!'] == 'h' : 'i' : '!' : []
== 'h':('i':('!':[]))
```


Lists

Lists are singly-linked lists in Haskell. The empty list is written as [] and a list node is written as x:xs. The value x is called the head and the rest of the list xs is called the tail. Thus:

```
"hi!" == ['h', 'i', '!'] == 'h' : 'i' : '!' : []
== 'h':('i':('!':[]))
```

When we define recursive functions on lists, think about the x : xs/[] representation to write pattern matches.

Example

(Re)-define the functions length, take and drop.

If lists weren't already defined in the standard library, we could define them ourselves:

data $List \ a = Nil \mid Cons \ a \ (List \ a)$

If lists weren't already defined in the standard library, we could define them ourselves:

data
$$List \ a = Nil \mid Cons \ a \ (List \ a)$$

Induction

If we want to prove that a proposition holds for all lists:

$$\forall xs. P(xs)$$

It suffices to:

If lists weren't already defined in the standard library, we could define them ourselves:

data
$$List \ a = Nil \mid Cons \ a \ (List \ a)$$

Induction

If we want to prove that a proposition holds for all lists:

$$\forall xs. P(xs)$$

It suffices to:

• Show P([]) (the base case from nil)

If lists weren't already defined in the standard library, we could define them ourselves:

data
$$List \ a = Nil \mid Cons \ a \ (List \ a)$$

Induction

If we want to prove that a proposition holds for all lists:

$$\forall xs. P(xs)$$

It suffices to:

- Show P([]) (the base case from nil)
- ② Assuming the inductive hypothesis P(xs), show P(x:xs) (the inductive case from cons).

Example (Take and Drop)

• Show that take (length xs) xs = xs for all xs.

Example (Take and Drop)

- Show that take (length xs) xs = xs for all xs.
- Show that take 5 xs ++ drop 5 xs = xs for all xs.

Example (Take and Drop)

- Show that take (length xs) xs = xs for all xs.
- Show that take 5 xs ++ drop 5 xs = xs for all xs.
 - ⇒ Sometimes we must generalise the proof goal.

Example (Take and Drop)

- Show that take (length xs) xs = xs for all xs.
- Show that take 5 xs ++ drop 5 xs = xs for all xs.
 - ⇒ Sometimes we must generalise the proof goal.
 - ⇒ Sometimes we must prove auxiliary lemmas.

data Tree a = Leaf| Branch a (Tree a) (Tree a)

```
data Tree a = Leaf
| Branch a (Tree a) (Tree a)
```

Induction Principle

To prove a property P(t) for all trees t:

• Prove the base case P(Leaf).

```
data Tree a = Leaf
| Branch a (Tree a) (Tree a)
```

Induction Principle

To prove a property P(t) for all trees t:

- Prove the base case P(Leaf).
- Assuming the two inductive hypotheses:

```
data Tree a = Leaf
| Branch a (Tree a) (Tree a)
```

Induction Principle

To prove a property P(t) for all trees t:

- Prove the base case P(Leaf).
- Assuming the two *inductive hypotheses*:
 - P(I) and
 - \bullet P(r)

```
data Tree a = Leaf
| Branch a (Tree a) (Tree a)
```

Induction Principle

To prove a property P(t) for all trees t:

- Prove the base case P(Leaf).
- Assuming the two inductive hypotheses:
 - P(I) and
 - $\bullet P(r)$

We must show $P(Branch \times I r)$.

```
data Tree a = Leaf
| Branch a (Tree a) (Tree a)
```

Induction Principle

To prove a property P(t) for all trees t:

- Prove the base case P(Leaf).
- Assuming the two *inductive hypotheses*:
 - P(I) and
 - P(r)

We must show $P(Branch \times I r)$.

Example (Tree functions)

Define leaves and height, and show $\forall t$. height t < leaves t

Rose Trees

data Forest $a = \text{Empty} \mid \text{Cons} (Rose a) (Forest a)$

data Rose a = Node a (Forest a)

Note that Forest and Rose are defined mutually.

Rose Trees

data Forest
$$a = \text{Empty} \mid \text{Cons} (Rose \ a) (Forest \ a)$$

data Rose a = Node a (Forest a)

Note that Forest and Rose are defined mutually.

Example (Rose tree functions)

Define size and height, and try to show

 $\forall t. \ height \ t \leq size \ t$

To prove a property about two types defined mutually, we have to prove two properties *simultaneously*.

data Forest
$$a = \text{Empty} \mid \text{Cons} (Rose a) (Forest a)$$

data Rose
$$a = Node a$$
 (Forest a)

Inductive Principle

To prove a property P(t) about all *Rose* trees t and a property Q(ts) about all *Forests* ts simultaneously:

To prove a property about two types defined mutually, we have to prove two properties *simultaneously*.

data Forest
$$a = \text{Empty} \mid \text{Cons} (Rose \ a) (Forest \ a)$$

data Rose
$$a = \text{Node } a$$
 (Forest a)

Inductive Principle

To prove a property P(t) about all Rose trees t and a property Q(ts) about all Forests ts simultaneously:

• Prove Q(Empty)

To prove a property about two types defined mutually, we have to prove two properties *simultaneously*.

data Forest
$$a = \text{Empty} \mid \text{Cons} \ (\textit{Rose a}) \ (\textit{Forest a})$$

data Rose
$$a = Node a$$
 (Forest a)

Inductive Principle

To prove a property P(t) about all *Rose* trees t and a property Q(ts) about all *Forests* ts simultaneously:

- Prove Q(Empty)
- Assuming P(t) and Q(ts) (inductive hypotheses), show $Q(Cons\ t\ ts)$.

To prove a property about two types defined mutually, we have to prove two properties *simultaneously*.

data Forest
$$a = \text{Empty} \mid \text{Cons} (Rose \ a) (Forest \ a)$$

data Rose a = Node a (Forest a)

Inductive Principle

To prove a property P(t) about all *Rose* trees t and a property Q(ts) about all *Forests* ts simultaneously:

- Prove Q(Empty)
- Assuming P(t) and Q(ts) (inductive hypotheses), show $Q(Cons\ t\ ts)$.
- Assuming Q(ts) (inductive hypothesis), show $P(Node \times ts)$.